On clique partitions of split graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clique Partitions of Glued Graphs

A glued graph at K2-clone (K3-clone) results from combining two vertex-disjoint graphs by identifying an edge (a triangle) of each original graph. The clique covering numbers of these desired glued graphs have been investigated recently. Analogously, we obtain bounds of the clique partition numbers of glued graphs at K2-clones and K3-clones in terms of the clique partition numbers of their orig...

متن کامل

Clique Partitions of Dense Graphs

In this paper, we prove that for any forest F ⊂ Kn, the edges of E(Kn)\E(F ) can be partitioned into O(n log n) cliques. This extends earlier results on clique partitions of the complement of a perfect matching and of a hamiltonian path in Kn. We also show that if a graph G has maximum degree 4, then the edges of E(Kn)\E(G) can be partitioned into roughly n 3 24 1 2 log n cliques provided there...

متن کامل

Partitions of Generalized Split Graphs

We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k, `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k, `) minimal obstruction when k = ` = 1 (split graphs), when k = 2, ` = 0 (bipartite graphs...

متن کامل

Matrix Partitions of Split Graphs

Matrix partition problems generalize a number of natural graph partition problems, and have been studied for several standard graph classes. We prove that each matrix partition problem has only finitely many minimal obstructions for split graphs. Previously such a result was only known for the class of cographs. (In particular, there are matrix partition problems which have infinitely many mini...

متن کامل

Clique coverings and partitions of line graphs

A clique in a graph G is a complete subgraph of G. A clique covering (partition) of G is a collection C of cliques such that each edge of G occurs in at least (exactly) one clique in C. The clique covering (partition) number cc(G) (cp(G)) of G is the minimum size of a clique covering (partition) of G. This paper gives alternative proofs, using a unified approach, for the results on the clique c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90297-f